В этой статье мы рассмотрим RFM-анализ, в основе которого лежат поведенческие факторы групп или сегментов клиентов. Данный метод анализа позволяет изучить поведение пользователей и то, как они совершают платежи. В результате вы получите ценные инсайты по построению директ-маркетинга для вашей компании. Также RFM-сегментация поможет вам применять в коммуникациях особый подход к каждой группе клиентов в вашем салоне красоты.
- Что такое RFM-анализ, в чем его цель и ценность для салона?
- Как сегментировать базу вручную?
- RFM-анализ в Passteam
- Как интерпретировать результаты RFM-анализа и использовать его результаты?
1. Что такое RFM-анализ, в чем его цель и ценность для бизнеса?
RFM-анализ — метод анализа, позволяющий сегментировать клиентов по частоте и сумме покупок и выявлять тех, которые приносят больше денег.
Аббревиатура RFM расшифровывается:
- Recency — давность (как давно ваши клиенты были у вас на процедурах). Высокий показатель давности означает, что у клиента уже сложилось достаточно хорошее впечатление о вашем бренде, поэтому он недавно посещал вас. Давность в срезе клиентской базы можно посмотреть, если отсортировать клиентов по дате последней покупки.
- Frequency — частота (как часто они у вас покупают). Высокий показатель частоты говорит о том, что клиенту нравится ваш бренд, ваши товары и услуги, поэтому он часто к вам возвращается. Для расчета частоты посещения нужно общее кол-во покупок/визитов разделить на кол-во месяцев/дней/годов и т.д.
- Monetary — деньги (общая сумма трат). Высокий уровень этого показателя означает, что клиенту нравится тратить именно у вас.
Для наиболее точного RFM-анализа, каждый из этих показателей необходимо условно разделить на 5 ступеней – от наименьшего к наибольшему. Однако в рамках этой статьи мы ограничимся 3 ступенями в каждом из показателей.
По этим признакам можно разделить всех ваших клиентов на группы, понять, кто покупает у вас часто и много, кто — часто, но мало, а кто вообще давно ничего не покупал.
RFM-анализ помогает разделить ваших клиентов на категории разных размеров, чтобы вам было легче понять, кто из них лучше всего реагирует на текущие рекламные кампании и на будущие активности.
Как правило, небольшой процент пользователей реагирует на общие рекламные предложения. RFM-анализ и RFM-сегментация являются отличным методом прогнозирования реакции клиента и улучшения взаимодействия, а также повышение прибыли. RFM использует поведение покупателей, чтобы определить, как работать с каждой группой клиентов.
Зачем нужен RFM?
Наработанная годами база клиентов позволяет анализировать потребности целевой аудитории и разрабатывать на их основе персональные предложения. Это важный актив любого бизнеса.
Удержание клиента и стимулирование его к повторным покупкам выводит из замкнутого круга, когда одним и тем же людям вы должны каждый раз делать холодные продажи вместо того, чтобы наладить с ними отношения один раз и на всю жизнь.
Если вы не ведёте базу клиентов, вы вынуждены снова и снова вкладывать деньги в рекламу. А могли бы подогревать лиды почти без вложений. Для этого достаточно уметь правильно сегментировать базу и разрабатывать предложения для каждого сегмента. Например, с помощью метода RFM. Его главные преимущества — простота и наглядность сегментации.
Преимущества RFM-анализа
Таргетирование определенных рассылок на определённые группы клиентов дает гораздо большую конверсию рекламы, нежели одинаковая не персонализированная реклама.
В начале каждой рекламной кампании нужно понять, какому сегменту клиентов будет показываться эта реклама. После этого необходимо создать тот контент, который будет наиболее сильно резонировать с выбранной аудиторией. И только потом бросать все усилия на запуск этой кампании. К сожалению, большинство из нас делают ровно наоборот.
RFM-анализ упрощает выбор целевой аудитории для кампании – он учитывает давность, частоту и сумму покупок по каждому отдельному клиенту и формирует на их основе готовые для кампаний сегменты клиентов. RFM-анализ крайне полезен в понимании ответной реакции ваших клиентов, а также для построения маркетинг-стратегии, основанной на сегментации клиентов.
RFM-анализ охотно ответит вам на такие вопросы, как
- Кто – мои лучшие клиенты?
- Кто из моих клиентов на грани потери?
- Кого потенциально можно перевести в более платящий сегмент?
- Кто – мои потерянные клиенты, на которых нужно обратить особое внимание?
- Кого из клиентов необходимо удерживать всеми силами?
- Кто из моих клиентов наиболее лоялен к моему бренду?
- Какой сегмент клиентов наиболее хорошо откликается на текущие рекламные кампании?
Наложение Закона Парето на RFM-анализ
RFM-анализ местами перекликается с известным Законом Парето, гласящим, что 80% результатов происходят благодаря 20% усилий. Когда на этот закон смотрят через призму маркетинга, это означает, что 80% всех ваших продаж исходят от 20% наиболее лояльных и постоянных клиентов. Постоянники всегда буду иметь высокое значение на выручку в бизнесе, а следовательно – возвращаемость этих клиентов крайне важна для показателей.
Роль RFM-анализа в возвращаемости клиентов
Малый бизнес регулярно сталкивается с давлением от привлечения новых клиентов в бизнес, которое в большинстве случаем определяет рост и траекторию развития бизнеса. Привлечение новых лидов часто требует больших бюджетов для осуществления.
Ни один бизнес не может существовать сам по себе без клиентов, поэтому в то время, как привлечение новых клиентов – один из базисов бизнес-стратегии, возвращаемость играет еще большую роль в формировании высоких показателей. Возвращаемость клиентов зависит от удовлетворенности клиента вашими услугами/продукцией, от поддержки, от всех точек соприкосновения клиента с вашим брендом.
Низкий показатель потерь – самый легкий подход расширять бизнес, т.к. такой подход опирается на удовлетворенность клиентов, а следовательно – на хороший сарафан. RFM-модель позволяет бизнесу создать уникальные воронки продвижения для разных сегментов, создавая ценность для клиентов и укрепляя лояльность и доверие.
2. Как сегментировать базу вручную?
Сбор данных
Чтобы провести RFM-анализ, понадобятся данные о всех покупках, совершённых всеми клиентами и суммы всех этих покупок. Можно собрать их вручную, например, используя сводные таблицы в Excel или Google Sheets. Однако этот процесс значительно упрощается, если автоматизировать его с помощью специальных сервисов.
Критерии сегментации клиентов
Вы распределяете клиентов на сегменты с учётом времени с момента последнего приобретения (Recency), частоты покупок (Frequency) и суммы потраченных средств (Monetary). Каждому из клиентов ставите по три оценки, соответствующие каждому из этих параметров. Например, по трёхбалльной системе (где 1 — хорошо, 2 — нормально и 3 — плохо).
Основная сложность — определить границы сегментов, потому что универсальных рекомендаций по этому поводу нет. Ориентируйтесь на нишу, жизненный цикл продукта и покупателя, и другие факторы.
Диапазон для каждого показателя у разных компаний будет свой. Допустим, вы продаете бытовую технику или мебель. В этом случае вы ставите оценку «хорошо», если покупатель сделает следующую покупку через 6 месяцев. Если же вы занимаетесь доставкой еды, оценку «плохо» можно ставить за отсутствие повторных заказов в течение 2-х недель. Суммы тоже будут сильно различаться. Для мебельного бизнеса 10 000 рублей — низкий чек, для доставки еды — высокий.
Формирование сегментов
Итак, у вас должно получиться 27 сегментов (3*3*3) с оценками вида 111, 112, 113, 121, 131 и так далее до 333.
Сегменты могут получиться неравномерными (в один сегмент могут попасть 90% всех клиентов, в другой — 1%). Поэтому слишком широкие группы целесообразно разбивать на несколько дополнительных, а узкие — объединять. Также можно выделять больше уровней. Однако это усложнит дальнейшую работу с сегментами, так как их получится еще больше. Если уровней будет 4 — получится 64 сегмента, если 5 — уже 125 и так далее.
Иногда для построения сегментов достаточно учитывать всего два показателя.
RF-анализ. Анализ по давности и частоте покупок. Показывает, как часто клиенты совершают покупки за анализируемый период. Позволяет выявить клиентов, которые недавно что-то купили и сотрудничают с компанией постоянно.
RM-анализ. Распределение покупателей по параметрам Recency и Monetary. Позволяет выявить клиентов, которые приносят больше всего прибыли. И тех, чей вклад в общую прибыль незначителен.
FM-анализ. Распределение клиентов в зависимости от частоты и суммы покупок. Позволяет выявить клиентов, которые покупают мало, но на большие суммы. И тех, кто совершает покупки часто, но с маленькими чеками.
Исходя из полученных данных, вы сможете выработать стратегию и тактику для работы с каждым сегментом клиентской базы.
Например, в группе 333 будут все клиенты, которые покупали давно, один раз и на маленькую сумму. Они кажутся наименее перспективными, но не стоит скидывать их со счетов: хоть раз, но они всё-таки проявили интерес к вашей продукции.
Или 111: это сливки (чемпионы) вашей клиентской базы. Покупают часто, на большие суммы и последняя покупка была недавно. Чтобы испортить отношения с такими клиентами, нужно очень сильно постараться.
Для каждого сегмента вы формируете персонализированные предложения со специальными условиями и начинаете выстраивать коммуникации. Можно выстраивать коммуникацию под каждый сегмент или ограничиться несколькими — теми, которые для вас сейчас в приоритете.
Как взаимодействовать с каждым из сегментов?
В Passteam RFM-анализ делит клиентскую базу на 9 сегментов, в зависимости от частоты их покупок и их давности. Прикиньте, какой процент вашей клиентской базы находится в каждом из сегментов, а затем представьте, насколько эффективными рекомендованные ниже активности могут быть для вашего бизнеса.
3. Сервисы и инструмент для RFM-сегментации и RFM-анализа
С ростом интереса к системам менеджмента и учета клиентов (CRM), RFM-анализ еще сильнее укоренился в маркетинге и аналитике. Даже если вы проводите единичную оценку потребительского поведения, вы можете облегчить себе жизнь с ручным или полуавтоматическим RFM-анализом.
Но если у вас достаточно большая клиентская база, не думаем, что вы захотите делать все расчеты вручную.
- Для расчетов в RFM-анализе, как правило, используют excel-таблиц. Брюс Харди и Питер Фейдер написали подробную инструкцию по подсчету RFM-показателей в Excel. Этот файл вы можете использовать для собственных расчетов. Но конечно, с 2008 года, эта статья нуждается в обновлении.
О том, как проводить RFM-анализ вручную, читайте в блоге Owox.
- Некоторые CRM-инструменты так же выполняют роль RFM-инструментов. Многие популярные CRM, как Битрикс-24, 1С и amoCRM автоматически сегментируют клиентов через RFM-анализ, поэтому можно ничего не делать вручную. Кстати, Passteam также автоматически делит вашу клиентскую базу на RFM-сегменты, читайте об этом в этой статье ниже.
- Если в вашей компании есть собственный отдел разработки, вы можете использовать R и Python для создания собственных RFM-моделей, по аналогии с SQL запросами.
RFM-анализ в Passteam
Passteam предоставляет всеобъемлющий RFM-анализ, а также много других инструментов для аналитики бизнеса и отчетов о деятельности. Passteam разработан специально для e-commerce индустрии и оффлайн-бизнесов, использующих современные облачные решения в работе. Passteam имеет прямую интеграцию с большинством популярных CRM-систем – Poster, YCLIENTS, iiko, Minbox, retailCRM и др.
В Passteam RFM-анализ делит клиентскую базу на 9 сегментов, в зависимости от частоты из покупок и их давности. Прикиньте, какой процент вашей клиентской базы находится в каждом из сегментов, а затем представьте, насколько эффективными рекомендованные ниже активности могут быть для вашего бизнеса.
На данный момент в Passteam можно проводить RFM-анализ по двум переменным – давности и частоте покупок. Фактически – RF-анализ, без учета суммы покупок.
В рамках малого бизнеса, двух этих показателей, без учета суммы покупок, достаточно для анализа и планирования дальнейшей активности с каждым из сегментов.
После подключения интеграции и окончания синхронизации списка клиентов, Passteam автоматически формирует 9 сегментов, анализируя данные о частоте покупок клиентов и их давности.
Наш сервис автоматизирует работу с базой клиентов и проводит RFM-анализ ежечасно, используя актуальные данные из вашей CRM.
Сортировка клиентов в сегменты происходит по следующей схеме:
Сегменты можно посмотреть во вкладке бокового меню Список клиентов –> Сегменты. Подробнее о каждом из RFM-сегментов внутри Passteam можно прочитать в гайде.
Как мы писали выше – нет универсальных показателей, по которым можно разделить клиентов в любом бизнесе. Поэтому настройки каждого из сегментов можно вручную подогнать под конкретно ваши условия. Дополнительно, вы можете добавить и другие фильтры для более узкого сегментирования.
Нажав на нужный сегмент вы увидите всех клиентов, подпадающих под указанные параметры.
Что можно делать с этими сегментами?
- Аудит клиентов. С помощью этих сегментов бы можете понять, какая часть ваших клиентов – ваши лояльные, какая часть – на грани потери и т.д.
- Сегментированные рассылки. Для повышения эффективности ваших рекламных кампаний отправляйте таргетированные сообщения на конкретный сегмент рассылки. Например – реактивационные для спящих, поощрительные для постоянных и т.д.
Как эффективно использовать RFM-методику
Маркетологи используют RFM-анализ на протяжении нескольких десятков лет, чтобы оптимизировать ROI от рекламных кампаний. Как правило, использовании RFM в рекламе заключается в использовании конкретного креатива и текста для конкретного сегмента. А также в других ситуациях, где необходимо сегментировать клиентов.
«Сегментация клиентов – это не какая-то чужеродная вещь в маркетинге. Большие компании как можно детальнее стараются сегментировать клиентов, а люди, стоящие за этим, имеют четко прорисованную стратегию – стратегию на сегментирование клиентов» – Нил Патель
Как увеличить LTV с помощью RFM
Как много ваши клиенты тратят на протяжении всего периода взаимодействия с вашим брендом зависит от ряда факторов. RFM-анализ может помочь со многими аспектами – уменьшить количество потерянных клиентов, предлагать допродавать товары сегментам, которые лучше всего идут навстречу, увеличивать лояльность клиентов и сарафанное радио, продавать дорогие товары/услуги и многое другое.
Небольшое предупреждение. Не переборщите. Если вы будете слишком часто взаимодействовать с одним, и тем же сегментом – клиенты могут взбеситься и прекратить покупки у вас.
RFM на запуске нового продукта
Продвигать ваши новые товары/услуги среди самых лояльных клиентов – отличный способ получить первые отзывы. Вы можете контактировать с вашими чемпионами и лояльными клиентами еще даже до запуска. Они могут предоставить вам полезные инсайты о том, что нужно доработать и как продвигать это. Также, такие клиенты будут гораздо охотнее продвигать новинку в своем окружении.
Как RFM увеличивает лояльность клиентов и их вовлеченность в бизнес?
Если вы запускаете программу лояльности, Чемпионы, Лояльные и Потенциальные лояльные клиенты – сегменты, на которые стоит делать упор в продвижении программы лояльности в первую очередь. Хотите сделать их опыт взаимодействия с вашим брендом более приятным и запоминающимся?
Используйте follow-up c ограниченными по времени предложениями – так шанс их скорой повторной покупки увеличиваться в разы. Рассылка с полезным образовательным/информационным контентом также увеличит их вовлеченность в ваш бренд.
Как RFM снижает уровень потерянных клиентов?
На грани риска и Спящие – два сегмента клиентов, на которых стоит обратить особое внимание. Рассылка персонализированных имейлов и звонки помогает вернуть их «в строй». Также предлагайте таким клиентам повторить их предыдущие покупки со скидкой, или опросите таких клиентов об их мнении о вашем бренде – прежде чем они уйдут от вас к конкуренту.
RFM-анализ как метод снижения расходов на маркетинг и увеличения ROI
RFM-анализ улучшает маркетинг в бизнесе в целом, а также:
- увеличивает LTV клиентов;
- бустит запуск новых продуктов/услуг;
- прокачивает клиентский опыт и их лояльности;
- снижает количество потерянных клиентов;
- повышает ROI рекламных кампаний;
- делает ретаргетинг кампании более эффективными и успешными;
- помогает понять ваш бизнес и сделать аналитику более прозрачной и др.
Нетаргетированные рекламные кампании, как правило, влетают в копеечку. При концентрировании усилий на более маленькую аудиторию можно значительно снизить расходы на рекламу, сделать ее более персонализированной, а сами креативы и тексты продумывать, основываясь на данные клиентов.
Фактически, RFM-анализ получился из прямого маркетинга. Частный пример – уменьшение стоимости рекламы за счет отправки бумажных каталогов только тем клиентам, кто реально ими пользуется и заказывает товары.
То же самое можно перенести и на диджитал-маркетинг, и на любую другую рекламную активность. Сегментирование базы перед запуском рекламы и выбор нужной целевой аудитории снижает расходы на эту самую рекламу и увеличивает ROI.
RFM для ремаркетинг/ретаргетинг кампаний
Ремаркетинг – подход в рекламе, когда вы показываете объявление тем клиентам, которые хотя бы однажды были на вашем сайте, но показываете его на совершенно других сайтах (в т.ч. сайтах конкурентов, и даже в инстаграме). Такая механика показа объявлений увеличивает количество кликов и эффективность кампании в целом.
Самый простой способ использовать RFM в ремаркетинге – экспортировать нужные сегменты клиентов (например – недавние покупатели), а позже, при настройке рекламы в Facebook, создать из этих листов аудиторию, кому будет показано объявление.
Что в итоге?
Успех использования RFM-анализа в маркетинге доказан сотнями ритейлеров, рестораторов, владельцев бьюти-предприятий и других предпринимателей.
Плюсы RFM-анализ
- RFM применим во многих сферах – e-comm, HoReCa, сфера красоты, оффлайн-ритейл и другие;
- Благодаря RFM вы узнаете больше о каждом сегменте, а каждом клиенте в целом, также о том – кто ваши лучшие покупатели;
- RFM помогает выстраивать высокоэффективные таргетированные рекламные кампании;
- RFM помогает улучшить клиентский опыт и лояльность;
- При комбинировании с другими маркетинговыми инструментами, дает детализированную аналитику по клиентам и полезные выводы на ее основе;
- RFM снижает стоимость маркетинговых активностей за счет оптимизации целевой аудитории;
- Снижает процент негативной реакции клиентов на рекламу за счет оптимизации целевой аудитории.
Ограничения RFM-анализа
- Нельзя полагаться на результаты RFM-анализа по клиентам, совершившим одну покупку;
- При единоразовой продаже одного продукта на результаты RFM-анализа также не стоит полагаться;
- RFM основывается на уже имеющихся данных о покупках, он не применим на ваших потенциальных клиентах;
- Без использования специальных сервисов расчеты вручную занимают достаточно много времени, особенно если у вас большая клиентская база;
- Показывая слишком много рекламы одному конкретному сегменту может привести к «перенасыщению» и снижению эффективности ваших кампаний.
Наши рекомендации
- Внедрите RFM-анализ в ваш бизнес – сначала, чтобы понять ваших клиентов, затем – чтобы запускать рекламу, которая попадет в цель;
- Используйте Passteam для всестороннего анализа вашей базы;
- Настройте автоматические рассылки по сегментам, основанные на результатах RFM-анализа.
Чек-лист по использованию RFM-анализа
Решите для себя, что вы готовы выделять на это ресурсы. Они потребуются для регулярной проверки данных, разработки стратегий по работе с каждым сегментом и корректировки стратегии в процессе.
Подготовьте данные для RFM-анализа. Понадобятся сведения по каждому покупателю: количество покупок за всё время, их сумма, а также дата последней покупки.
Распределите всех клиентов по сегментам. Количество сегментов зависит от количества параметров оценки: при использовании трёх параметров у вас будет 27 сегментов, при использовании двух (как в RM-, RF- и FM-анализе) — 9.
Визуализируйте распределение на графике. Можно построить его в Excel по данным таблицы. Сделайте выводы о составе базы.
Разработайте маркетинговые активности под каждый сегмент. Это может быть как серия рассылок, так и более широкая и комплексная кампания.
Проанализируйте результаты кампаний. Сделайте повторное измерение для сравнения (через 1–2 месяца для крупных магазинов, через 3–6 месяцев — для небольших).
RFM — далеко не единственный, но крайне полезный инструмент для анализа клиентской базы. Проделав с его помощью сравнительно небольшую работу, вы выстраиваете подход, при котором учитываются индивидуальные особенности каждого клиента.